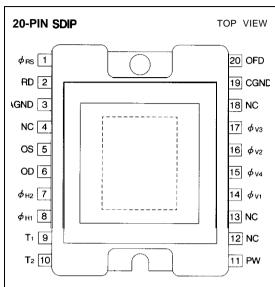
LZ2124J

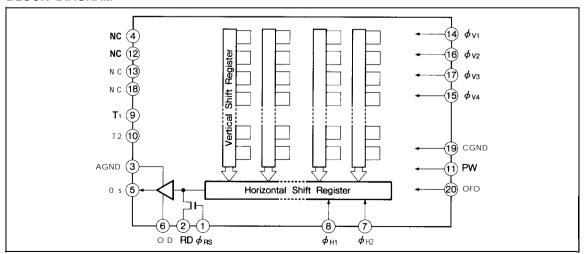
1/2 type B/W CCD Area Sensor for CCIR

DESCRIPTION

LZ2124J is 1/2-type (8.0 mm) solid-state image sensor that consists of PN phote-diodes and CCDS (charge-coupled devices). Having approximately 320000 pixels (horizontal 542 x vertical 582), the sensor provides a high resolution stable B/W image.


FEATURES

Number of pixels: 512 (H) ×582 (V)
Pixel pitch: 12.8 μm (H) ×8.4 μm (V)
Number of optical black pixels


: Horizontal; front 2 and rear 28

- Low fixed pattern noise and lag
- No sticking and no image distortion
- Blooming suppression structure
- Built-in output amplifier
- Variable electronic shutter (1/W to 1/1 0000 s)
- Compatible with CCIR standard
- Package: 20-pin SDIP[CERDIP](WDIP020-N-0600B)

PIN CONNECTIONS

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME
RD	Reset transistor drain
OD	Output transistor drain
0s	Video output
φ _{RS}	Reset transistor aate clock
$\phi_{V1}, \phi_{V2}, \phi_{V3}, \phi_{V4}$	Vertical shift register gate clock
φ _{H1,} φ _{H2,}	Horizontal Shift register gate clock
OFD	Overflow drain
PW	P type well
AGND	Analog part ground
CGND	Clock part ground
T ₁ , T2	Test terminal

ABSOLUTE MAXIMUM RATINGS

(Ta= 25°C)

ABOOLOTE IIII (AIIIIOIII TA TITTOO		ι,	ia= 23 C)
PARAMETER	SYMBOL	RATING	UNIT
Output transistor drain voltage	Vod	Oto +18	v
Reset transistor drain voltage	V RD	Oto +18	v
Overflow drain voltage	Vofd	o to +55	v
Test terminal. T1	VT1	-0.3 to +18	v
Test terminal, T2	V T2	Oto +18	v
Reset gate clock voltage	V ∳RS	-0.3 to +18	v
Vertical shift register clock voltage	VφV	-10to +18	v
Horizontal Shift register clock voltage	V ф н	-0.3 to +18	v
Voltage difference between PW and vertical clock	V PW − V <i>φ</i> ∨	−26 to O	v
Storage temperature	Tstg	-20 to +60	°C
Operating ambient temperature	Topr	-20 to +70	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE	
Operating ambient tempetarure		Topr		25.0		°C		
Output trans	Output transistor drain voltage		Voo	14.5	15.0	16,0	v	
Reset transi	stor drain vo	ltage	VRD	_	Vod		V	
Overflow	When DC i	is applied	Vofd	5.0	(adj.)	19.0	V	1
Overnow	•	e is applied	V ¢ OFD	22.0	_		V	2
Analog part	ground		AGND	T -	0.0	_	V	
Clock part g	round		CGND	Τ-	0.0	_	l v	
P-well volta	ae		VFW	- 9.5		V ø∨L	V	
Test termina	ıl, Tı		V T1		0.0	_	V	
Test termina	l, T2		VT2		Voo		V	
		LOW level	V φ V1L, V φ V2L V φ V3L, V φ V4L	-9,5	- 9.0	-8.5	V	
	Vertical shift register clock	INTERMEDIATE level	V φ V 11, V φ V 21 V φ V 31, V φ V 41		0.0		V	
		HIGH level	V Ф V1H, V Ф V3H	14.5	15.0	15.5	v	
Horizontal sl	hift	LOW level	V φ H1L, V φ H2L	- 0.05	0.0	0,05	v	
register cloc	register clock	HIGH level	V ф Н1 Н, V ф Н2 Н	4,7	5,0	6.0	V	
Decet mate	alaal.	LOW level	V ø RSL	-0.1	0.0	0.1	V	
Reset gate clock	HIGH level	V ø RSH	8.0	9.0	10.0	v		
Vertical shift register clock frequency		føv1, føv2 føv3, føv4		15.63		kHz		
Horizontal s	Horizontal shift register clock frequency		føн1, føн2		9.66		MHz	
Reset gate	Reset gate clock frequency		føRS	T	9.66		ı MHz	

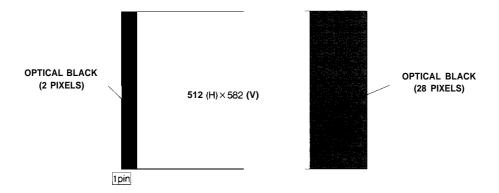
NOTES:

- 1. When DC voltage is applied, shutter speed is 1/50 seconds,
- 2. When pulse is applied, shutter speed is less than 1 \prime 50 seconds.

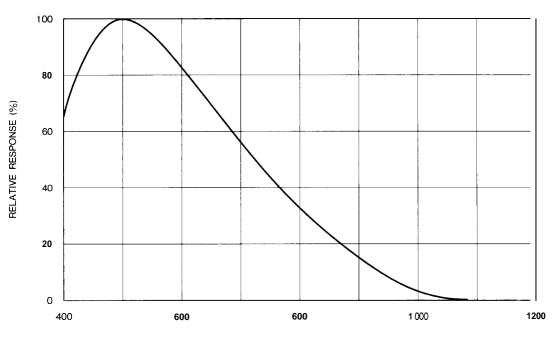
ELECTRICAL CHARACTERISTICS (Drive method : Field Accumulation)

(Ta = 25°C, Operating conditions: typical values for the recommended operating conditions, Color temperature of light source: 3200 K / IR cut-off filter (CM-500, 1 mmt))

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Photo response non-uniformity	PRNU			10	0/0	2
Saturation signal	Vsat	700			mV	3
Dark output voltage	Vdark		0.3	3,0	mV	1, 4
Dark signal non-uniformity	DSNU		0.6	2.0	mV	1, 5
Sensitivity	R	580	770		mV	6
Gamma	Ύ		1			
Smear ratio	SMR		0.005	0.016	%	7
Image lag	Al			1.0	%	8
Blooming suppression ratio	ABL	1000				9
Output transistor drain current	lop		4.0	8.0	mA	
Output impedance	Ro		300		Ω	
Dark noise	Vnoise		0.2	0.3	mV	10
OB difference in level				1.0	mV	11

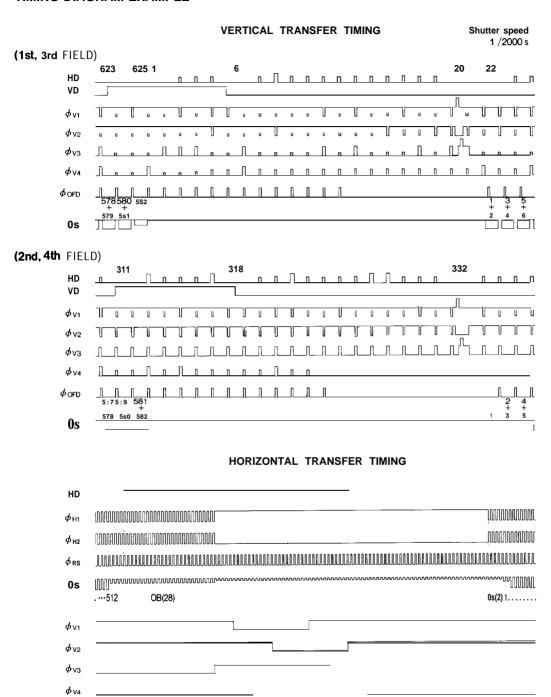

- The standard output voltage is defined as 150 mV by the average output voltage under uniform illumination.
- The standard exposure level is defined when the average output voltage is 150 mV under uniform illumination.
- VOFD should be adjusted to the minimum voltage with that ABL satisfy the specification.

NOTES:

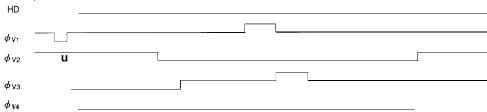

- Ta: +60°C
- 2. The image area is divided into 10x 10 segments. The segment's voltage is the average output voltage of all the pixels within the segment. PRNU is defined by (Vmax -Vmin)/Vo, where Vmax and Vmin are the maximum and the minimum values of each segment's voltage respectively, when the average output voltage Vo is 150 mV.
- 3. The image area is divided into 10x 10 segments. The saturation signal is defined as the minimum of each segment's voltage which is the average output voltage of all the pixels within the segment, when the exposure level is set as 10 times, compared to standard level.
- 4. The average output voltage under a non-exposure condition.
- 5. The image area is divided into 10x 10 segments. DSNU is defined by (Vdmax - Vdmin) under the non-exposure condition where Vdmax and Vdmin are the maximum and the minimum values of each segment's voltage, respectively,

- that is the average output voltage over all pixels in the
- 6. The average output voltage when a 1000 lux light source attached with a 90°A reflector is imaged by a lens of F4, f50 mm.
- 7. The sensor is adjusted to position a V/I O square at the center of image area where V is the vertical length of the image area. SMR is defined by the ratio of the output voltage detected during the vertical blanking period to the maximum of the pixel voltage in the V/I O square.
- 8. The sensor is exposed at the exposure level corresponding to the standard condition preceding non-exposure condition. Al is defined by the ratio between the output voltage measured at the 1st field during the non-exposure period and the standard output voltage.
- 9. The sensor is adjusted to position a V/I O square at the center of image area. ABL is the ratio between the exposure at the standard condition and the exposure at a point where a blooming is observed.
 - The RMS value of the dark noise (after CDS). The bandwidth range is from 100 kHz to 5.0 MHz.
- 11 The difference between the average output voltage of the effective area and the OB part under the non-exposure condition.

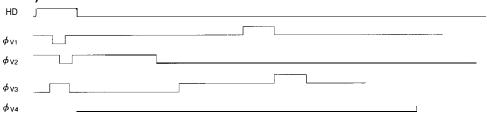
PIXEL STRUCTURE



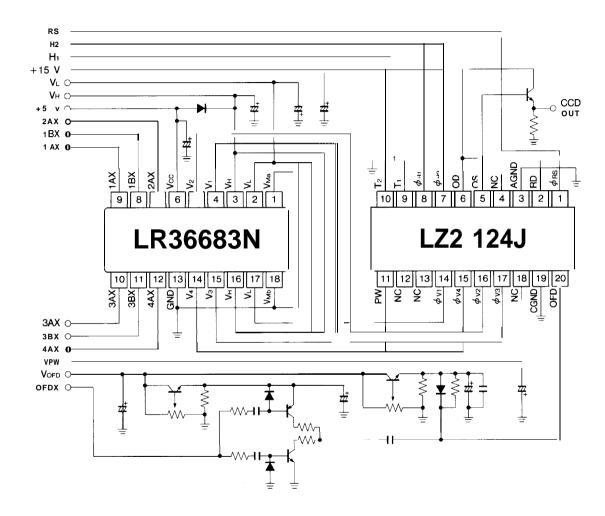
SPECTRAL RESPONSE EXAMPLE

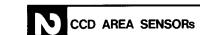

TIMING DIAGRAM EXAMPLE

 ϕ of D



READOUT TIMING




(2nd, 4th FIELD)

SYSTEM CONFIGURATION EXAM

m

